China OEM Torsionally Rigid High Torque CHINAMFG Customized Single Elastic Spacer Stainless Steel Flexible Drum Disc Shaft Gear Coupling for Crane

Product Description

Torsionally rigid high torque CHINAMFG customized single elastic spacer stainless steel flexible drum disc shaft gear coupling for crane

 

Metal flex couplings are disc type couplings in which several flexible metallic elements are alternately attached with bolts to opposite flanges. As polymeric elastomer is replaced by metal disc, Metal Flex coupling provides excellent temperature capability without sacrificing angular and axial misalignment. The coupling provides low axial and bending stiffness while possessing high torsional rigidity. The stretched shim pack design of CHINAMFG Metal Flex couplings provides zero backlash. CHINAMFG Metal Flex couplings are available up to 13367 Nm torque with single shim pack (UMK) and double shim pack (UMS) series.

FEATURES

1.Power to weight ratio high

2.Accommodates angular and axial misalignments

3.High temperature application

4.Visual inspection is possible without dismantling equipments

5.Low axial stiffness with high torsional rigidity

6.High-speed capacity

7.Range up to 12000 Nm

8.Added advantage of stretch fitted shim pack

Material Available

Stainless Steel:SS201,SS301, SS303, SS304, SS316, SS416 etc.
35CrMo 40CrMo42 CrMo
Steel:mild steel, Carbon steel, 4140, 4340, Q235, Q345B, 20#, 45#
Aluminum:AL6061, Al6063, AL6082, AL7075, AL5052, A380 etc.
Iron:A36, 45#, 1213, 12L14, 1215 etc.
Plastic:ABS, PC, PE, POM, Delrin, Nylon, , PP,PEI, Peek
or as customer required .

CNC Turning

φ0.5 – φ300 * 750 mm,+/-0.005 mm

CNC Milling

510 * 1571 * 500 mm(max),+/-0.001 mm-+/-0.005 mm

Surface Finish

Aluminum:Clear Anodized,Color Anodized,Sandblast Anodized,Chemical Film,Brushing,Polishing,Chroming.
Stainless Steel:Polishing,Passivating,Sandblasting,Laser engraving.
Steel:Zinc plating,Oxide black,Nickel plating,Chrome plating,Carburized,
Heat treatment,Powder Coated.
Plastic:Painting,Chrome plating,polishing,Sandblast,Laser engraving.

Drawing Format

IGS,STP,X_T ,DXF,DWG , Pro/E, PDF

Test Equipment

Measurement instrument, Projector, CMM, Altimeter, Micrometer, Thread Gages, Calipers, Pin Gauge etc.

 

 

Production workshop:
 

Manufacturer of Couplings, Fluid Coupling, JAW Coupling, can interchange and replacement of lovejoy coupling and so on.

A coupling can interchange and replacement of lovejoy coupling is a device used to connect 2 shafts together at their ends for the purpose of transmitting power. The primary purpose of couplings is to join 2 pieces of rotating equipment while permitting some degree of misalignment or end movement or both. In a more general context, a coupling can also be a mechanical device that serves to connect the ends of adjacent parts or objects. Couplings do not normally allow disconnection of shafts during operation, however there are torque limiting couplings which can slip or disconnect when some torque limit is exceeded. Selection, installation and maintenance of couplings can lead to reduced maintenance time and maintenance cost.

Company information:

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible gear coupling

Safety Considerations When Using Flexible Gear Couplings in Critical Applications

Flexible gear couplings are widely used in critical applications where safety and reliability are of utmost importance. While these couplings are designed to accommodate misalignments and reduce vibrations, there are some safety considerations to keep in mind:

  • Proper Installation: Ensure that the flexible gear coupling is installed correctly according to the manufacturer’s guidelines. Improper installation can lead to premature failure and safety hazards.
  • Regular Inspection: Perform regular inspections and maintenance to identify any signs of wear, damage, or misalignment. Addressing issues promptly can prevent unexpected failures.
  • Torque and Speed Ratings: Adhere to the specified torque and speed ratings of the coupling. Operating the coupling beyond its limits can lead to catastrophic failure.
  • Environmental Conditions: Consider the environmental conditions in which the coupling will operate. Factors such as temperature, humidity, and the presence of corrosive substances can impact the coupling’s performance and safety.
  • Emergency Stop Mechanism: In critical applications, it is essential to have an emergency stop mechanism in place to quickly disengage the coupling during emergencies.
  • Overload Protection: Implement overload protection systems to prevent excessive torque transmission, which could cause damage to connected equipment.
  • Periodic Maintenance: Follow a regular maintenance schedule to ensure that the coupling remains in optimal condition and to identify any potential safety risks.
  • Training and Awareness: Ensure that personnel operating and maintaining the equipment are adequately trained and aware of the safety considerations related to the flexible gear coupling.

By adhering to these safety considerations and following best practices, the use of flexible gear couplings in critical applications can contribute to safe and reliable operation, reducing the risk of downtime and costly failures.

flexible gear coupling

Real-World Case Studies of Flexible Gear Couplings in Engineering Projects

Flexible gear couplings have been successfully implemented in various engineering projects across different industries. Here are some real-world case studies showcasing their benefits:

  1. Steel Rolling Mill: In a steel rolling mill, flexible gear couplings were used to connect the main drive motor to the rolling mill’s gearbox. The couplings accommodated the misalignment between the motor and gearbox shafts, reducing vibration and noise during operation. The flexibility of the gear teeth helped protect the gearbox from shock loads caused by changes in the rolling load, extending the gearbox’s lifespan and ensuring smooth and reliable power transmission.
  2. Paper Manufacturing Plant: A paper manufacturing plant utilized flexible gear couplings in their pulp processing equipment. The couplings’ ability to compensate for both angular and parallel misalignments allowed for easier installation and alignment of the equipment. The coupling’s torsional flexibility ensured constant velocity transmission, critical for maintaining consistent paper quality during the production process. Additionally, the damping effect of the gear teeth reduced vibrations, minimizing wear and tear on the machinery and improving overall equipment reliability.
  3. Wastewater Treatment Plant: At a wastewater treatment plant, flexible gear couplings were employed in the aeration system. The couplings helped absorb shock loads from the aeration process, protecting the blowers and motors from potential damage. Their flexibility allowed the coupling to handle misalignments caused by settling of the foundation over time. This resulted in reduced maintenance downtime and increased overall efficiency of the treatment plant.
  4. Wind Turbine Application: Wind turbines utilized flexible gear couplings to connect the low-speed shaft to the high-speed shaft. The coupling’s flexibility allowed for efficient transmission of torque despite the dynamic wind load fluctuations. This flexibility also provided overload protection during extreme wind conditions, safeguarding the turbine’s mechanical components from damage. The coupling’s ability to dampen vibrations contributed to the turbine’s smooth operation, reducing wear and tear and maintenance costs.

These case studies demonstrate the versatility and effectiveness of flexible gear couplings in various engineering applications, showcasing their ability to enhance performance, reduce maintenance, and improve the reliability of critical systems.

flexible gear coupling

Accommodating Misalignment and Reducing Vibrations in Flexible Gear Couplings

Flexible gear couplings use an elastomeric flexible element, often made of high-quality rubber, to connect the two gear hubs. This design allows the coupling to accommodate misalignment between the connected shafts and reduce vibrations during operation.

1. Misalignment Accommodation: The flexible nature of the elastomeric element allows it to bend and flex as the shafts move out of alignment. Flexible gear couplings can accommodate three main types of misalignment:

  • Angular Misalignment: Occurs when the shafts are not parallel and are at an angle to each other.
  • Parallel Misalignment: Occurs when the shafts are not in a straight line but are parallel to each other.
  • Axial Misalignment: Occurs when the shafts are displaced along their axis.

The ability to handle these types of misalignment is crucial in various industrial applications where machinery may experience movement, thermal expansion, or other dynamic forces.

2. Vibration Reduction: The elastomeric material in the flexible gear coupling acts as a damping mechanism. It absorbs and dissipates vibrations and shocks generated during operation. This damping effect helps in reducing noise levels and protects the connected equipment from damage caused by excessive vibrations.

Overall, the combination of misalignment accommodation and vibration reduction in flexible gear couplings contributes to improved system reliability, reduced maintenance requirements, and extended machinery life.

China OEM Torsionally Rigid High Torque CHINAMFG Customized Single Elastic Spacer Stainless Steel Flexible Drum Disc Shaft Gear Coupling for Crane  China OEM Torsionally Rigid High Torque CHINAMFG Customized Single Elastic Spacer Stainless Steel Flexible Drum Disc Shaft Gear Coupling for Crane
editor by CX 2024-04-10

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *