China OEM S160 Super High Pressure Stainless Steel Flexible Coupling

Product Description

 1. Available Size: 
  * 
3/4” – 12” ( DN20-DN300mm) 

 2. Maximum Working Pressure : 
 * 2000 CHINAMFG ( 137 bar) 
 *  working pressure dependent on material, wall thickness and size of pipe .

3. Application: 
*  
Provides a flexible pipe joint which allows for expansion, contraction and deflection
*  This product joints standard Sch 40S cut grooved pipe  
*  Suit for pipeline medium including cold water, hot water, rare acid, Oil-free air and chemical

4. Material 
  

   Body Material : SS304, SS316, SS316L, SS CE8MN, SS Duplex 2204, SS Duplex 2507 
   Rubber Sealing : EPDM 
   Bolt & Nut :  SS304, SS316 

5.  Dimension Sheet : 

                                                                                                                                                       
    
                                                                                                                           
           Typical for all sizes 

 

Model S30 Stainless Steel Flexible Coupling
Nominal Size Pipe O.D Working Pressure  Pipe End Separation Coupling Dimensions Coupling Bolts
X Y Z Qty Size
mm/inch (mm/inch) (psi/bar) (mm/inch) mm/inch mm/inch mm/inch pcs mm
20           3/4 26.9   1.050 600                          42  0-1.6                  0-0.06 47                   1.850 87                3.425 43              1.693 2 M10x40
25                       1 32            1.260 500            35 0-1.6                  0-0.06 53             2.087 90    3.543 43     1.693 2 M10x45
32               1 1/4 38     1.496 500              35 0-1.6                  0-0.06 58          2.283 94        3.700 44        1.732 2 M10x45
32               1 1/4 42.4   1.660 500             35 0-1.6                  0-0.06 62      2.441 106  4.173 44        1.732 2 M10x45
40                  1 1/2 48.3   1.900 500            35 0-1.6                  0-0.06 67      2.638 106   4.173 43     1.693 2 M10x45
50                      2 57     2.244 500            35 0-1.6                  0-0.06 77       3.031 116   4.567 43    1.693 2 M10x50
50               2 60.3   2.375 500            35 0-1.6                  0-0.06 78            3.071 117    4.606 43     1.693 2 M10x50
65               2 1/2 73        2.875 500             35 0-1.6                  0-0.06 94         3.700 134   5.275 44        1.732 2 M10x50
65               2 1/2 76.1       3.000 500             35 0-1.6                  0-0.06 94         3.700 134   5.275 44        1.732 2 M10x50
80               3 88.9     3.500 500             35 0-1.6                  0-0.06 110         4.330 150   5.905 45       1.771 2 M10x50
100               4 108     4.250 450           31 0-3.2                 0-0.13 135         5.315 184   7.244 47     1.850 2 M12x60
100               4 114   4.500 450           31 0-3.2                 0-0.13 139        5.472 190  7.480 48    1.890 2 M12x60
125               5 133   5.250 400           28 0-3.2                 0-0.13 164        6.456 215   8.465 48    1.890 2 M12x60
125               5 141.3   5.563 400           28 0-3.2                 0-0.13 168       6.614 215   8.465 48    1.890 2 M12x60
150              6 159   6.259 350           25 0-3.2                 0-0.13 190      7.480 240  9.448 49    1.929 2 M12x70
150              6 168.3  6.625 350           25 0-3.2                 0-0.13 198      7.795 246     9.685 49    1.929 2 M12x70
200             8 219.1  8.625 350           25 0-3.2                 0-0.13 253  9.961 318    12.519 57    2.244 2 M12x70
250           10 273   10.750 300           21 0-3.2                 0-0.13 315   12.401 396  15.590 59         2.322 2 M20x110
300            12 323.9  12.750 300           21 0-3.2                 0-0.13 372  14.645 452  17.795 60      2.362 2 M20x110

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

How does a flexible coupling handle electrical insulation between shafts?

Flexible couplings are typically not designed to provide electrical insulation between shafts. In most cases, flexible couplings are used solely for the purpose of transmitting mechanical power from one shaft to another while accommodating misalignment and absorbing shocks and vibrations. They do not offer any electrical isolation or insulation properties.

When electrical insulation is required between two rotating shafts in a system, additional components or specialized couplings are used. For applications where electrical isolation is necessary, insulated couplings or special insulation components can be employed. These types of couplings feature insulating materials, coatings, or designs that prevent electrical current from flowing between the connected shafts.

Insulated couplings can be beneficial in certain applications, such as electric motor drives or systems involving sensitive electronics. They help prevent stray currents, ground loops, and electrical interference that could potentially damage equipment or affect the accuracy of electronic signals. However, it is important to note that not all flexible couplings provide this electrical insulation capability, and users should carefully select couplings that meet the specific electrical isolation requirements of their application.

Summary: Flexible couplings, as standard mechanical components, do not inherently provide electrical insulation between shafts. They are primarily used for mechanical power transmission and misalignment compensation. If electrical insulation is needed between rotating shafts, insulated couplings or specialized components with insulating properties should be chosen to meet the specific requirements of the application.

flexible coupling

Can flexible couplings be used in marine and automotive applications?

Yes, flexible couplings are commonly used in both marine and automotive applications. They offer various advantages that make them suitable for these industries:

  • Misalignment Compensation: In marine and automotive systems, there can be misalignments due to factors such as hull flexing in marine vessels or engine movements in vehicles. Flexible couplings can accommodate these misalignments, ensuring efficient power transmission between the engine and the propeller or wheels.
  • Vibration Damping: Both marine and automotive environments experience vibrations from engines, propellers, or road conditions. Flexible couplings help dampen these vibrations, reducing wear on components and enhancing the comfort of passengers or crew members.
  • Shock Load Absorption: Marine vessels and vehicles can encounter shock loads during operation, especially in rough sea conditions or uneven terrains. Flexible couplings can absorb and dissipate the impact of these shock loads, protecting the drivetrain and transmission components.
  • Compact Design: Space is often limited in marine vessels and automotive systems. Flexible couplings come in various compact designs, making them suitable for applications with restricted installation space.
  • Corrosion Resistance: Marine environments expose components to corrosive seawater, while automotive systems may encounter exposure to road salt and other corrosive substances. Flexible couplings made from corrosion-resistant materials, such as stainless steel or non-metallic compounds, are ideal for these applications.
  • Easy Maintenance: Flexible couplings with self-lubricating features or low maintenance requirements are well-suited for marine and automotive applications, where regular maintenance can be challenging.
  • High Torque Capacity: Automotive systems, especially in heavy-duty vehicles, require couplings that can handle high torque levels. Flexible couplings designed for automotive use offer high torque capacity and reliability.

Overall, the adaptability, vibration damping, and misalignment compensation provided by flexible couplings make them suitable for various marine and automotive applications. Whether used in boats, yachts, ships, cars, trucks, or other vehicles, flexible couplings contribute to smooth and reliable power transmission, leading to improved performance and reduced maintenance requirements.

flexible coupling

How does a flexible coupling handle angular, parallel, and axial misalignment?

A flexible coupling is designed to accommodate various types of misalignment between two rotating shafts: angular misalignment, parallel misalignment, and axial misalignment. The flexibility of the coupling allows it to maintain a connection between the shafts while compensating for these misalignment types. Here’s how a flexible coupling handles each type of misalignment:

  • Angular Misalignment: Angular misalignment occurs when the axes of the two shafts are not collinear and form an angle with each other. Flexible couplings can handle angular misalignment by incorporating an element that can flex and bend. One common design is the “spider” or “jaw” element, which consists of elastomeric materials. As the shafts are misaligned, the elastomeric element can deform slightly, allowing the coupling to accommodate the angular offset between the shafts while still transmitting torque.
  • Parallel Misalignment: Parallel misalignment, also known as offset misalignment, occurs when the axes of the two shafts are parallel but not perfectly aligned with each other. Flexible couplings can handle parallel misalignment through the same elastomeric element. The flexible nature of the element enables it to shift and adjust to the offset between the shafts, ensuring continuous power transmission while minimizing additional stresses on the machinery.
  • Axial Misalignment: Axial misalignment, also called end-play misalignment, occurs when the two shafts move closer together or farther apart along their common axis. Flexible couplings can handle axial misalignment through specific designs that allow limited axial movement. For instance, some couplings use slotted holes or a floating member that permits axial displacement while maintaining the connection between the shafts.

By providing the capability to handle angular, parallel, and axial misalignment, flexible couplings offer several advantages for power transmission systems:

  • They help to prevent premature wear and damage to the connected equipment, reducing maintenance and replacement costs.
  • They minimize vibration and shock loads, enhancing the overall smoothness and reliability of the machinery.
  • They reduce the risk of equipment failure due to misalignment-induced stresses, improving the system’s operational life.
  • They allow for easier installation and alignment adjustments, saving time and effort during setup and maintenance.

Overall, flexible couplings play a crucial role in handling misalignment and ensuring efficient power transmission in various industrial applications.

China OEM S160 Super High Pressure Stainless Steel Flexible Coupling  China OEM S160 Super High Pressure Stainless Steel Flexible Coupling
editor by CX 2024-04-13

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *