China manufacturer Cushioned Sleeve Bearing Coupling Flexible Coupling NBR Jaw Coupling

Product Description

 

Product Description:

Item Name Cushioned Sleeve Bearing Coupling Flexible Coupling NBR Jaw Coupling for Pumps, Motors
Application motor, pumps, gear boxes, compressors, blowers, mixers, and conveyors
 
Color black or as Customer’s Request
Thickness

 

5mm To 8mm (customized)

Package According to Your Requirements
MOQ 1000PCS
Processing Method Compression Molding
Service OEM and ODM Are Also Welcomed
Material Customized. Aluminum, Stainless Steel,NR,SBR, NBR, EPDM, MQ, SR etc.
Sample Available. Trial Sample 7 to 20 days.

 

Product Picture

 

 

 

 
 

These stainless steel shaft couplers allow you to couple 2 size shafts together. They can be used for connecting motor shafts to drive shafts, or 2 different-sized shafts. These shaft couplers have a length of 0.75″, a outer diameter of 0.42″, and couple 1/4″ to 5mm shafts.

Connect this to that with a set-screw coupler. These couplers are made of machined aluminum and have a spiral cut that makes them slightly flexible so they can be fit to 2 shafts even if they are not perfectly co-linear and will help reduce binding effects.  

 

This coupler will connect a 5mm diameter shaft to an 8mm diameter shaft. A perfect add on for motors. Comes with 2 sets of double set-screws (two per side) for secure attachment. You’ll need a 2mm allen wrench to tighten/loosen the set-screws.

 

About HangZhousun
 

HangZhousun Group
Total Number of Personnel:>350 staffs (as of June.24, 2571)
Total Production scale: >35000 square meters

Head Office: HangZhousun Rubber & Plastic Technology Co.,Ltd
Founded: 2002
Location: HangZhou, ZheJiang
Main Business: Compression Molding Rubber Products & Parts, etc.

Branch Company: HangZhou Mingrui Intelligent Technology Co., Ltd
Established: 2018
Location: HangZhou, ZheJiang
Main Business: Molds, Refined Hardware, Intelligent Automation Equipment, etc.

Branch Company: ZheJiang Yousheng New Material Technology Co.,Ltd
Established: 2018
Location: HangZhou, ZheJiang
Main Business: Extrusion Molding Rubber Products & Parts, etc.

 

R&D and Quality Control

 

 

HangZhousun’s R&D team has more than 120 staff ,and gathers CHINAMFG and creative experts and professors.
Keeping responsibility in mind, R&D team brings multiple capabilities, supports HangZhousun keep leading at rubber&plastics industry.
R&D team forms strict management system on each project in compliance with latest world scientific standard and requirements.

We strictly emphasize on quality and management control.
Our R&D and production management follows TUV & IS014001 Environmental System.
Beyond these, Our finished products meet approval of ISO9001, IATF16949 & UL quality control system.
HangZhousun can make our products meet standards as customer’s demand like CE, ROHS, REACH, CP65, PAHS, FDA, TSCA,etc.
 
(IF YOU WANT MORE DETAIL INFORMATION OF OUR COMPANY AND PRODUCTS, WELCOME TO CONTACT AND CHAT WITH US. SHOULD ANY OF OUR ITEMS BE OF INTEREST TO YOU, PLEASE LET US KNOW WITH THE HOPE THAT WE MAY WORK WITH YOU IN THE FUTURE. )

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

What role does a flexible coupling play in minimizing wear and tear on connected components?

A flexible coupling plays a vital role in minimizing wear and tear on connected components by absorbing and mitigating various mechanical stresses that occur during operation. Here’s how a flexible coupling achieves this:

  • Misalignment Compensation: One of the primary causes of wear and tear on rotating machinery is misalignment between connected shafts. Misalignment can occur due to factors such as thermal expansion, foundation settling, or assembly errors. A flexible coupling can accommodate both angular and parallel misalignments, reducing the stress on the shafts and connected components. By allowing for misalignment, the coupling prevents excessive forces from being transmitted to the connected components, minimizing wear.
  • Vibration Damping: During operation, rotating machinery can generate vibrations that lead to accelerated wear on components like bearings, gears, and couplings. A flexible coupling acts as a vibration damper, absorbing and dispersing vibrations, reducing their impact on connected components. This damping effect helps prevent fatigue and extends the life of the components.
  • Shock Absorption: Machinery may experience sudden shocks or impact loads during start-ups, shutdowns, or due to external factors. A flexible coupling is designed to absorb and cushion these shocks, preventing them from propagating through the system and causing damage to sensitive components.
  • Smooth Torque Transmission: In rigid couplings, torque transmission between shafts can be abrupt and cause torque spikes. These spikes put stress on the connected components, leading to wear and fatigue. Flexible couplings transmit torque smoothly, without sudden spikes, ensuring even distribution of forces and reducing the wear on components.
  • Controlling Torsional Vibrations: Torsional vibrations, a type of vibration that affects rotating shafts, can be damaging to connected components. Some flexible couplings are designed to address torsional vibration issues, providing additional protection against wear and tear.
  • Compensating for Thermal Expansion: Temperature fluctuations can lead to thermal expansion or contraction of machinery components. A flexible coupling can accommodate these changes, preventing undue stress on the connected components that may arise from differential expansion rates.

By performing these functions, a flexible coupling acts as a protective barrier for connected components, minimizing wear and tear, and contributing to their longevity. The reduced wear and stress on the components also result in lower maintenance costs and improved overall reliability of the mechanical system.

flexible coupling

Can flexible couplings be used in high-temperature environments, such as furnaces and kilns?

Flexible couplings can be used in high-temperature environments, such as furnaces and kilns, but the selection of the appropriate coupling is crucial to ensure reliable performance and longevity under these extreme conditions. Here are some key considerations:

  • Material Selection: The choice of materials is critical when using flexible couplings in high-temperature applications. Look for couplings made from heat-resistant materials that can withstand the elevated temperatures without experiencing significant degradation. Common materials used for high-temperature couplings include stainless steel, high-temperature alloys, and certain types of elastomers designed for heat resistance.
  • Lubrication: High temperatures can cause lubricants to break down or evaporate more quickly. Some flexible couplings may require specialized high-temperature lubricants to ensure smooth operation and reduce wear at elevated temperatures. Check the manufacturer’s recommendations for lubrication in high-temperature environments.
  • Thermal Expansion: In high-temperature applications, the equipment and shafts may experience thermal expansion, leading to misalignment. Flexible couplings with higher misalignment capabilities may be necessary to accommodate these thermal effects and prevent additional stress on the system.
  • Torsional Stiffness: Consider the required torsional stiffness for the specific application. In high-temperature environments, couplings may experience changes in stiffness due to temperature variations. It is essential to choose a coupling with appropriate torsional characteristics for the intended operating temperature range.
  • Application Specifics: Evaluate the specific operating conditions of the furnace or kiln, including the maximum and fluctuating temperatures, vibration levels, and potential exposure to chemicals or other harsh elements. Choose a coupling that can withstand these conditions without compromising performance or safety.
  • Coupling Type: Different types of flexible couplings offer varying degrees of heat resistance and performance capabilities. For example, certain types of disc couplings or metal bellows couplings are more suitable for high-temperature environments due to their robust construction and resistance to heat.
  • Regular Maintenance: In high-temperature applications, couplings may be subject to more stress and wear. Regular inspection and maintenance are essential to monitor the coupling’s condition, lubrication, and alignment to ensure it continues to function optimally in the challenging environment.

Overall, flexible couplings can be utilized in high-temperature environments, but it is vital to choose a coupling specifically designed and rated for these conditions. Working closely with coupling manufacturers and considering the specific demands of the application will help ensure that the selected coupling can handle the challenges posed by furnaces, kilns, and other high-temperature equipment, providing reliable power transmission and contributing to the overall efficiency and safety of the system.

flexible coupling

How does a flexible coupling handle angular, parallel, and axial misalignment?

A flexible coupling is designed to accommodate various types of misalignment between two rotating shafts: angular misalignment, parallel misalignment, and axial misalignment. The flexibility of the coupling allows it to maintain a connection between the shafts while compensating for these misalignment types. Here’s how a flexible coupling handles each type of misalignment:

  • Angular Misalignment: Angular misalignment occurs when the axes of the two shafts are not collinear and form an angle with each other. Flexible couplings can handle angular misalignment by incorporating an element that can flex and bend. One common design is the “spider” or “jaw” element, which consists of elastomeric materials. As the shafts are misaligned, the elastomeric element can deform slightly, allowing the coupling to accommodate the angular offset between the shafts while still transmitting torque.
  • Parallel Misalignment: Parallel misalignment, also known as offset misalignment, occurs when the axes of the two shafts are parallel but not perfectly aligned with each other. Flexible couplings can handle parallel misalignment through the same elastomeric element. The flexible nature of the element enables it to shift and adjust to the offset between the shafts, ensuring continuous power transmission while minimizing additional stresses on the machinery.
  • Axial Misalignment: Axial misalignment, also called end-play misalignment, occurs when the two shafts move closer together or farther apart along their common axis. Flexible couplings can handle axial misalignment through specific designs that allow limited axial movement. For instance, some couplings use slotted holes or a floating member that permits axial displacement while maintaining the connection between the shafts.

By providing the capability to handle angular, parallel, and axial misalignment, flexible couplings offer several advantages for power transmission systems:

  • They help to prevent premature wear and damage to the connected equipment, reducing maintenance and replacement costs.
  • They minimize vibration and shock loads, enhancing the overall smoothness and reliability of the machinery.
  • They reduce the risk of equipment failure due to misalignment-induced stresses, improving the system’s operational life.
  • They allow for easier installation and alignment adjustments, saving time and effort during setup and maintenance.

Overall, flexible couplings play a crucial role in handling misalignment and ensuring efficient power transmission in various industrial applications.

China manufacturer Cushioned Sleeve Bearing Coupling Flexible Coupling NBR Jaw Coupling  China manufacturer Cushioned Sleeve Bearing Coupling Flexible Coupling NBR Jaw Coupling
editor by CX 2024-04-29

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *